论文部分内容阅读
针对FCM算法主要应用于点数据聚类,不能直接处理关系型数据的缺点。本文提出了一种基于Web日志的数据挖掘聚类算法,首先对FCM算法进行改进使其能够处理关系型数据,并对算法进行了健壮性改进。然后针对传统FCM算法需要在没有先验知识的基础上,事先确定聚类类别数的缺点,引入了竞争凝聚算法(CA),与FCM算法相结合,形成了CAFCM算法,使之能够自动确定最佳分类类别数。实验表明,CA-FCM算法的挖掘结果与FCM算法的结果相近,在用户访问会话数量不太大时性能优于FCM算法。