论文部分内容阅读
随着互联网产业的快速发展,推荐系统已成为商业领域的研究热点,传统的仅考虑用户相似度或项目相似度的推荐算法已不能满足用户对推荐效率和推荐准确率的要求.考虑到社会好友间信任关系在推荐中的有益作用.信任关系应当成为推荐系统的考虑因素之一,文章提出一种基于标签和信任关系的协同过滤模型.首先,根据用户标签筛选出相似度较高的用户,根据他们对项目的评价预测得分;然后,根据社区内信任关系计算基于信任的评分;最后,综合两项得分进行预测.通过Epinions数据集验证表明:对比单纯的相似度推荐,添加信任因素后推荐结果有明显改