论文部分内容阅读
The influence of additive silica on the microstructure of plasma sprayed Al2O3 and Al2O3+13 wt pct TiO2 ceramiccoatings at laser melting has been investigated in this study. At the laser melting, additive silica in Al2O3 ceramiccoating can reduce the stress of cooling shrinkage generated during solidification. Moreover, silica can render finersize of grains of the melting layer and form continuous glassy matter around the grain boundaries so as to reducefurther the cooling stresses and to suppress the formation and spreading of cracks. On the other hand, at the lasermelting, TiO2 reacts with Al2O3 and transforms into TiAl2O5. The latter new phase has great and anisotropiccoefficients of thermal expansion leading to big and asymmetrical stresses and thus to form cracks in the meltinglayer of Al2O3+13 wt pet TiO2 coating. Due to the fact that the influence of additive silica on the suppression of theformation of cracks is rather limited and cannot counterbalance the negative effect of TiAl2O5, thus the me