论文部分内容阅读
研究了一种基于动态自组织神经网络(The Dynamic Adaptive Self-Organizing Map Neural Network简称:DA—SOM)的两阶段中文文档聚类方法,第一阶段对中文文本向量进行DASOM训练,第二阶段对虚拟的坐标集聚类。该算法动态地组织DASOM,由文本的内容来决定模型的结构;与直接聚类相比,降低了计算时间;与基于静态SOM文本聚类相比,减少了输出层节点数,改善了聚类效果。通过数值实验对比表明该方法对中文文本聚类具有有效性。