论文部分内容阅读
K均值算法(K-means)目前较为成功地应用于客户市场细分,但随着市场规模的扩大,面临着对于初始类个数敏感,易陷入局部极小值的严重问题,制约了聚类效果。提出基于区间值数据,以自适应欧氏距离作为度量的动态聚类方法,将客户的多维属性和基因算法结合提高类初始化质量,自适应地调整聚类数,并通过实验测试表现出较好的性能。