论文部分内容阅读
考虑到不同部件(眼睛,嘴等)对人脸分析的贡献差别,提出基于多部件稀疏编码的人脸图像分析方法.首先,选取对人脸(表情)分析影响较大的几个人脸部件,然后,利用多视角稀疏编码方法学习各部件的字典,并计算相应的稀疏编码,最后,将稀疏编码输入分类器(支持向量机和最小均方误差)进行判决.分别在数据库JAFFE和Yale上进行人脸(表情)识别及有遮挡的人脸(表情)识别实验.实验结果表明,基于多部件稀疏编码的人脸分析能较好地调节各部件的权重,优于各单一部件和简单的多部件融合方法的性能.