论文部分内容阅读
研究柴油机故障诊断问题。柴油机故障具有小样本、特征间冗余信息严重等特点,用大样本的神经网络无法对故障进行准确诊断。为提高柴油机故障诊断精度,提出一种粗糙集和支持向量机相融合的柴油机故障诊断算法。首先采用粗糙集对柴油机故障特征属性进行约简,消除特征间冗余信息,然后采用专门针对小样本的支持向量机建立柴油机故障诊断器,最后进行柴油机故障诊断仿真测试。测试结果表明,改进方法提高了柴油机故障诊断效率和精度,可为柴油机故障定位和分析提供有价值参考意见。