论文部分内容阅读
基于线性临近支持向量机,提出一种改进的分类器—直接支持向量机。该分类器与临近支持向量机相比,对线性分类二者相同;对于非线性分类,直接支持向量机的Lagrangian乘子求解公式和分类器的表达式都更加简单,计算复杂度降低一半,且通过替代核函数就可实现线性与非线性的统一,可使用相同的算法代码,改正了临近支持向量机的不足。数值实验表明,非线性分类时,直接支持向量机的训练速度比临近支持向量机要快一倍左右,而测试速度则快更多,且分类精度并没有降低。