A Review of Mg Isotope Analytical Methods by MC-ICP-MS

来源 :Journal of Earth Science | 被引量 : 0次 | 上传用户:flyerhan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Application of multi-collector inductively coupled plasma mass spectrometry(MC-ICP-MS) has led to big breakthrough of analytical methods for metal stable isotopes, resulting in rapid progresses in non-traditional stable isotope geochemistry. As a new geological tracer, Mg isotopes have been widely applied in studies of almost all important disciplines of geochemistry. High precision Mg isotope data measured by MC-ICP-MS are now available with precision about 0.05‰ amu-1(2SD) or better. Because mass bias caused by chemical procedure and instrument can easily cause significant analytical error, it is still a challenge to obtain accurate Mg isotope data for natural samples. In this paper, we systematically review the development of analytical technique of Mg isotopes, with a detailed description of a series of important techniques used in the measurement process, including calibration of instrumental mass-bias, chemical purification process, matrix effect, and pitfalls for high precision isotope analyses. We compare standard data from different labs and establish a guideline for Mg isotope analysis procedure. Additionally, we briefly discuss the behaviors of Mg isotopes during geological processes including equilibrium and kinetic Mg isotope fractionations, such as magma differentiation, chemical and thermal diffusion, and continental weathering. Finally, we propose some future prospects for Mg isotope geochemistry in both high and low temperature geological processes. Application of multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has led to big breakthrough of analytical methods for metal stable isotopes, resulting in rapid progresses in non-traditional stable isotope geochemistry. As a new geological tracer, Mg isotopes have been widely applied in studies of almost all important disciplines of geochemistry. High precision Mg isotope data measured by MC-ICP-MS are now available with precision about 0.05 ‰ amu-1 (2SD) or better. Because mass bias caused by chemical procedure and this instrument can easily cause a significant analytical error, it is still a challenge to obtain accurate Mg isotope data for natural samples. In this paper, we systematically review the development of analytical technique of Mg isotopes, with a detailed description of a series of important techniques used in the measurement process, including calibration of instrumental mass-bias, chemical purification process, matrix effect, and pitfalls for high precisio We compare standard data from different labs and establish a guideline for Mg isotope analysis procedures. We, we briefly discuss the behaviors of Mg isotopes during geological processes including equilibrium and kinetic Mg isotope fractionsations, such as magma differentiation, chemical and thermal diffusion, and continental weathering. Finally, we propose some future prospects for Mg isotope geochemistry in both high and low temperature geological processes.
其他文献
时间:清光绪二十六年(1900年)农历八月至1901年(辛丑)夏末.rn地点:北京rn第一场rn[1900年农历八月初三.早半天.
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
The Aptian–Albian series are characterized, in Tunisia, by several variations in subsidence rates and records discrete unconformity between Albian and Aptian i
Two ruby-related basaltic fields were recently discovered in the southeast region of Kenya, exposed in the Nguu and Ngulai Hills vicinities. These fields host a
期刊