【摘 要】
:
心电信号是人体的主要生理信号之一,通过对心电信号的分析可了解心脏的健康状态,由于心电信号属于微弱低频信号,所以在采集过程中极易受到来自人体内部和外部的噪声干扰,影响心脏疾病诊断的效果.基线漂移、工频干扰和肌电干扰是心电信号采集过程中不能忽略的噪声干扰.对心电信号的相关去噪算法的效果进行对比分析.首先将模拟理想状态下的心电信号作为原始数据,同时模拟出心电信号中存在的基线漂移、工频干扰和肌电干扰.每种噪声干扰分别选择三种常用的去噪算法,采用信噪比、均方差和心电信号的频域特征的评估指标进行去噪效果的比较.在此基
【机 构】
:
长春大学 电子信息工程学院,长春 130022;杭叉集团股份有限公司 研发部,杭州 311305
论文部分内容阅读
心电信号是人体的主要生理信号之一,通过对心电信号的分析可了解心脏的健康状态,由于心电信号属于微弱低频信号,所以在采集过程中极易受到来自人体内部和外部的噪声干扰,影响心脏疾病诊断的效果.基线漂移、工频干扰和肌电干扰是心电信号采集过程中不能忽略的噪声干扰.对心电信号的相关去噪算法的效果进行对比分析.首先将模拟理想状态下的心电信号作为原始数据,同时模拟出心电信号中存在的基线漂移、工频干扰和肌电干扰.每种噪声干扰分别选择三种常用的去噪算法,采用信噪比、均方差和心电信号的频域特征的评估指标进行去噪效果的比较.在此基础上,提出了一种多噪声心电信号的去噪方法并给出去噪流程和效果.研究结果表明:(1)对于基线漂移、工频干扰和肌电干扰分别采用小波变换法、陷波滤波法和小波阈值法的去噪效果最好;(2)当心电信号含两种及两种以上噪声时,按照滤除基线漂移、工频干扰和肌电干扰的去噪顺序滤波效果最好.
其他文献
SSL VPN流量常常被一些非法应用利用,来绕过防火墙等安全设施的检测.因此,对SSL VPN加密流量的有效识别对网络信息安全具有重要意义.针对此,提出了一种基于Bit级DPI和深度学习的SSL VPN加密流量识别方法,所提方法分为两个步骤:利用Bit级DPI指纹生成技术识别SSL流量,缩小识别范围;再利用基于注意力机制的改进的CNN网络流量识别模型识别SSL VPN流量.该方法不仅有效解决了传统SSL加密流量指纹识别方法存在的漏识别率较高的问题,同时改进后的深度学习模型能提取网络流量中具有非常显著性的细
针对探地雷达(ground penetrating radar,GPR)采集数据时会产生高频杂波影响地下目标自动识别的问题.提出了一种基于变分贝叶斯的GPR图像非负矩阵分解方法(probability nonnegative matrix factorization,PNMF).该方法使用变分贝叶斯模型对非负矩阵分解的基矩阵和系数矩阵进行近似推理,得到杂波成分的低秩矩阵表示,进而将杂波从图像中分离出来.实验过程采用模拟和实测数据进行对比分析,通过信噪比和视觉质量结果验证了PNMF对杂波有较好的抑制作用,具
针对标准WOA算法初始种群分布不均、收敛速度较慢、全局搜索能力弱且易陷入局部最优等问题,提出一种混合策略改进的鲸鱼优化算法.采用Sobol序列初始化种群以使初始解在解空间分布更均匀;通过非线性时变因子和惯性权重平衡并提高全局搜索及局部开发能力,并结合随机性学习策略增加迭代过程中种群的多样性;引入柯西变异提升算法跳出局部最优的能力.通过对12个基准函数和一个水资源需求预测模型的参数估计进行优化实验,结果表明,基于混合策略改进的鲸鱼优化算法在寻优精度及收敛速度上均有明显提升.
基于密度的聚类算法(DBSCAN)是最有效的轨迹数据挖掘方法之一,但基于密度的聚类算法往往受到输入参数选择的限制.在轨迹数据挖掘中,聚类结果不仅受到类内距离和类间距离的影响,还受到聚类中坐标点个数的影响.因此,提出了一种新的基于内外占空比的集群有效性指标来平衡这三个因素,该指标可以自动选择密度聚类的输入参数,并在不同的数据集上形成有效的聚类,优化后的聚类方法可应用于出行者行为轨迹的深度分析和挖掘.实验结果证明,与传统的有效性指标相比,提出的基于占空比的评价指标能够优化输入参数,获得较好的出行者位置信息聚类
针对由于雾霾天气影响造成拍摄的图像出现模糊不清、低对比度和色彩暗淡等问题,提出一种融合估计与评估网络的去雾算法.根据大气退化模型将雾霾图像输入到两个联合且独立的估计网络模型中,分别得到透射图与大气光图的估计值;将估计得到的透射图与大气光值输入到雾图成像公式中,得到去雾图像;通过生成式对抗GAN网络中的鉴别器来联合鉴别,生成更好的透射图与大气光值;最后,通过雾图成像公式反演恢复出清晰的无雾图像.实验结果表明,该算法去雾后的图像变得清晰,对比度得到提高,且图像质量评价指标峰值信噪比和结构相似性指数分别达到了2
针对多媒体技术及应用课程的重难点骨骼动画教学,提出将剪纸文化融入骨骼动画教学的创新改革方案.以成果导向教育为引导,以学生发展为中心,从课前、课中和课后介绍融入剪纸文化的骨骼动画教学创新改革,提升学生的计算机应用能力,培养学生传承创新剪纸文化,实现用现代数字媒体技术弘扬中华优秀传统文化.
胰腺图像的三维重建对于辅助疾病诊断具有重要意义.提出一种全自动的胰腺图像三维重建方法,利用改进的U-Net深度学习网络对图像进行分割,并结合面绘制算法生成三维可视化模型.实验结果表明,该方法重建准确度较高,执行效率快,对辅助诊疗具有积极的作用.
信息意识是当代大学生适应信息化社会和自我发展的必备核心素养.为了落实“立德树人”根本任务,本文通过梳理信息意识的相关文献,结合马克思主义有关学说,从技术层面、生存层面、意识层面三个维度归纳出大学生应具备的信息意识的内涵;通过调查,找出大学生在信息意识方面存在的不足之处;提出了从学生个人层面、高校层面、社会层面三方面合力的培养路径.
拷贝数变异是一种主要的基因组结构变异形式,会导致基因组区域中出现大小不等的扩增或缺失.针对现有拷贝数变异检测算法受GC含量偏差、测序误差等因素影响而导致检测能力低的问题,提出了一种基于遗传算法优化的BP神经网络拷贝数变异检测算法.该算法充分考虑基因组相邻位置之间的内在相关性,融合多个特征,并使用BP神经网络解决各个特征之间的联合作用以预测CNV;针对现有的BP神经网络模型存在的问题,利用遗传算法优化BP神经网络的权值和阈值,以提高该算法的CNV检测性能.实验结果表明,该算法对不同测序覆盖深度和肿瘤纯度共3
为了促进中医舌诊的标准化和客观化,推动中医舌诊客观化研究,探究以深度学习为代表的人工智能技术在舌诊客观化领域的应用现状和研究水平,文章以舌像的采集-预处理-图像识别-客观诊断为主线,对舌像辩证自动化的新方法进行了归纳和总结.通过方法综述,为智能化舌诊和中医现代化研究提供方法参考和研究思路,促进人工智能技术在中医舌诊领域的深度发展.