论文部分内容阅读
车牌检测作为车牌识别系统中的重要环节,直接影响着车牌识别的准确度.为提高车牌的检测率和检测速度,提出了一种基于HSV颜色模型和多分块局部二值模式(MB_LBP)特征的级联Adaboost车牌检测方法.首先将车牌图像由RGB颜色空间转换到HSV颜色空间,统计蓝色像素占车牌总像素的比例,来构建第一层强分类器;其次对车牌字符样本提取MB_LBP特征,利用Adaboost分类器训练方法进行特征选择及分类器训练,最后利用Cascade结构检测法形成一种新的车牌检测算法.实验表明,本文算法有效的提高了车牌检测率