论文部分内容阅读
针对现有直觉模糊c均值聚类算法无法发现非凸聚类结构的缺陷,提出了一种基于核化距离的直觉模糊c均值聚类算法.算法在定义了基于核的直觉模糊欧式距离基础上,通过把聚类样本映射到高维特征空间,使原来没有显现的特征突现出来,从而能够更好地聚类.实验选择一组人工数据集及一组UCI数据集测试了本文算法,并将其与五种经典的聚类算法进行了比较.实验结果充分表明了该算法的有效性及优越性.