论文部分内容阅读
针对基于加速度信号的人体行为识别,采用递阶遗传算法(HGA)训练径向基函数(RBF)神经网络,获得满意的识别正确率.设计适应度函数,利用四分位数间距改进HGA中参数基因的交叉方式,给出自动确定子代生成区域的方法,省去以往同类算法中的经验性设定,并结合算术交叉选择优秀子代,然后对比均匀变异和非均匀变异子代的适应值,实现对RBF网络结构和参数的联合优化.在基于加速度信号的行为识别系统中,与基本HGA和其他常用的训练方法相比,文中算法训练的RBF分类器可获得更低的输出误差和更高的测试样本识别正确率.