论文部分内容阅读
统工业自动分拣存在工件识别准确率不高、特征定义复杂等问题,虽然新兴的深度学习为此类问题提供了较好的解决方法,但仍存在对边缘端设备计算能力要求较高的问题,为此本文提出一种基于云雾结合的工件识别算法,即在云端采用改进ALEXNET卷积神经网络进行训练,然后将训练好的模型下载到雾(边缘)端设备,对工件进行实时识别.对100个不同工件进行实验,结果表明:改进后识别准确率从ALEXNET的98%提高到99%,模型参数减少25%,同时可以充分利用云端的强大计算能力与边缘设备的实时性,为智能工件识别提供了一种新途径.