论文部分内容阅读
针对两类样本企业信用状况的重叠问题,提出一种基于多目标规划和支持向量机(SVM)的企业信用评估模型。基于TOPSIS法,分别以"正常企业"样本逼近理想点、"违约企业"样本逼近负理想点为目标,构建多目标规划模型;运用实码加速遗传算法求解得出指标综合权重,通过构造加权样本,减少两类样本企业信用状况的重叠,可在一定程度上提高SVM的预测精度。应用实例证明了该模型的可行性和有效性。