Quantitative Trait Loci Mapping of Maize Yield and Its Components Under Different Water Treatments a

来源 :植物学报(英文版) | 被引量 : 0次 | 上传用户:bm_imba
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Drought or water stress is a serious agronomic problem resulting in maize (Zea mays L.) yield loss throughout the world. Breeding hybrids with drought tolerance is one important approach for solving this problem. However, lower efficiency and a longer period of breeding hybrids are disadvantages of traditional breeding programs. It is generally recognized that applying molecular marker techniques to traditional breeding programs could improve the efficiency of the breeding of drought-tolerant maize. To provide useful information for use in studies of maize drought tolerance,the mapping and tagging of quantitative trait loci (QTL) for yield and its components were performed in the present study on the basis of the principle of a mixed linear model. Two hundred and twenty-one recombinant inbred lines (RIL) of Yuyu 22 were grown under both well-watered and water-stressed conditions. In the former treatment group, plants were well irrigated, whereas those in the latter treatment group were stressed at flowering time.Ten plants of each genotype were grown in a row that was 3.00 m×0.67 m (length×width). The results show that a few of the QTL were the same (one additive QTL for ear length, two additive QTL and one pair of epistatic QTL for kernel number per row, one additive QTL for kernel weight per plant), whereas most of other QTL were different between the two different water treatment groups. It may be that genetic expression differs under the two different water conditions. Furthermore, differences in the additive and epistatic QTL among the traits under water-stressed conditions indicate that genetic expression also differs from trait to trait.Major and minor QTL were detected for the traits,except for kernel number per row, under water-stressed conditions. Thus, the genetic mechanism of drought tolerance in maize is complex because the additive and epistatic QTL exist at the same time and the major and minor QTL all contribute to phenotype under water-stressed conditions. In particular, epidemic QTL under water-stressed conditions suggest that it is important to investigate the drought tolerance of maize from a genetic viewpoint.
其他文献
Microarray analysis was initially performed to screen for differentially expressed genes between nitrateand ammonium-fed rice (Oryza sativa L.) leaves. In total
With the addition of urea as an inhibitor,four groups of reducing dioxin emission experiments in sintering pot were conducted.The results show that,adding 0.05%,
The effect of Zr,Mo,Y dopant on mechanical and electrical properties of Pd-Ru binary alloy was investigated in this work.The alloys were prepared in a vacuum hi
The microstructures and magnetic properties of Ce32.15Co49.36Cu9.84Fe9.65 magnet sintered at the temperatures ranging from 1005 to 1105 ℃ were investigated.The
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
A new roll shifting strategy with varying stroke and varying step was investigated.Two characteristic parameters including cat ear height and gap contour smooth
为快速检测和鉴定产肠毒素大肠杆菌(ETEC)菌毛(K88和K99)和毒素(STa)基因,本研究设计合成了针对K88、K99和STa基因的3对特异性引物,对K88、K99和STa基因扩增条件进行优化,建
Microporous titanium dioxide films were prepared by the sol-gel methods on glass substrates, using tetrabutyl titanate as source material. In order to absorb th
K_4Ce_2Nb_(10)O_(30) ultrafine powders were prepared by stearic acid method (SAM). The obtained products were analyzed by X-ray diffraction, transmission electr
A new vision-based long-distance lane perception and front vehicle location method was developed for decision making of full autonomous vehicles on highway road