论文部分内容阅读
提出一种多目标粒子群算法。首先基于Pareto支配得到外部归档集,针对粒子容易陷入局部最优的问题,通过拥挤度函数来筛选归档集中的Pareto最优解;然后对粒子种群的不同子部分别采用不同突变来增加解的多样性;最后引入决策者的偏好信息,从而筛选出符合决策者偏好的Pareto最优解。通过测试函数进行数值实验,其结果表明:最终得出的Pareto解的当代距离指标值整体接近于0,与真实的Pareto边界较为接近;由于加入决策者偏好,最终得到的最优解并未覆盖整个Pareto边界,缩短了搜索时间,收敛性较好。