论文部分内容阅读
关联规则挖掘技术目前被广泛应用于入侵检测系统中。关联规则挖掘算法之一的FP-growth算法在处理数值量的输入时需要二值化,使得准确率不高;而Fuzzy Apriori算法需要重复扫描数据库,效率较低。针对此问题,改进现有的FP-growth算法,提出模糊化FP-growth算法,从而提取模糊关联规则,用于N类异常数据的分类入侵检测。在KDDCup99数据集上评估,结果表明对于数值量的输入,该方法应用于入侵检测准确率高于FP-growth算法,学习效率高于Fuzzy Apriori算法。