论文部分内容阅读
采用K近邻算法(Knearest neighbors ,简称KNN)进行分类时,如果训练样本数量太大,那么搜索测试样本的K个最近邻时,算法的计算量很大.本文针对KNN的不足提出了一种改进方法.改进的KNN算法通过定义样本的延拓类和延拓能力,保留延拓能力强的样本作为它延拓类中其它训练样本的代表,来缩减训练样本数量,达到减少算法计算量的目的.实验证明,改进的KNN算法具有很好的性能.