论文部分内容阅读
提出一种(θ,k)-匿名模型,通过对记录进行语义分析确定敏感属性值的相似或相异性,将一个确定了k值的等价类分成θ组,使记录在组内保持敏感属性值相似,在组间保持敏感属性值相异,并采用距离度量方法划分等价类.实验结果表明,(θ,k)-匿名模型可以在较低的信息损失下,同时抵制背景知识与相似性双重攻击.