论文部分内容阅读
支持向量机(SVM)的文本分类算法被广泛应用,其中序列最小优化算法(SMO)是它的一个特例。SMO算法使用了块与分解技术,简单并且容易实现,但是它的收敛较慢,迭代次数较多。解决的办法是改进SMO算法中工作集的选择算法,并更新步长因子,目的是为了使目标函数尽可能地下降。文中基于这个目标提出了改进的SMO算法来进一步提高SVM的训练速度和分类的准确程度。