论文部分内容阅读
摘要:焦化企业配煤和炼焦过程是存在诸多不确定性、无法用数学模型描述的复杂工业过程,传统控制方法难以实施控制。因此要实现配煤成本的最优控制是个比较复杂的问题。本文在焦化理论和实际生产所获的数据基础上,以神经元网络为指导,建立焦炭质量预测模型;利用单种和混合煤中各组分的关系,建立起混合煤的质量预测模型。在以上两个模型的基础上,把炼焦过程中配煤成本最小化的问题转化成为带约束的最优化问题。再利用遗传算法可以比较方便地求得近似最优解。本文利用实际数据和仿真实验,验证方法的可行性。
全文查看链接