论文部分内容阅读
在电机转子故障诊断中,为了进一步提高诊断方法的自适应性和分类准确性,提出一种支持向量机和证据理论的故障诊断方法.利用小波包分解振动信号和提取特征向量,构造多类支持向量机概率输出.采用改进的D-S证据理论,建立支持向量机与证据理论的诊断模型.实验结果表明:与常规故障诊断方法相比,该故障诊断方法可行,且具有更高的诊断准确率,为电机转子故障诊断研究提供有效的途径.