论文部分内容阅读
Abstract
Successful design and implementation of a miscible gas injection project depends upon the minimum miscibility pressure (MMP) and other factors such as reservoir and fluid characterization. The experimental methods available for determining MMP are both costly and time consuming. Therefore, the use of correlations that prove to be reliable for a wide range of fluid types would likely be considered acceptable for preliminary screening studies. This work includes a comparative evaluation of MMP correlations and thermodynamic models using an equation of state by PVTsim software (Schlumberger, 2001a). We observed that none of the evaluated MMP correlations studied in this investigation is sufficiently reliable. EOS-based analytical methods seemed to be more conservative in predicting MMP values.
Successful design and implementation of a miscible gas injection project depends upon the minimum miscibility pressure (MMP) and other factors such as reservoir and fluid characterization. The experimental methods available for determining MMP are both costly and time consuming. Therefore, the use of correlations that prove to be reliable for a wide range of fluid types would likely be considered acceptable for preliminary screening studies. This work includes a comparative evaluation of MMP correlations and thermodynamic models using an equation of state by PVTsim software (Schlumberger, 2001a). We observed that none of the evaluated MMP correlations studied in this investigation is sufficiently reliable. EOS-based analytical methods seemed to be more conservative in predicting MMP values.