论文部分内容阅读
重点研究在噪声环境下,话者识别中语音信号的特征提取。将能简化信号,消除较小分量而保留信号的基本特征的数学形态滤波器良好的滤波性应用在一维语音信号的处理中。并在噪声环境下,应用线性预测的MFCC特征提取方法提高鲁棒性。提取几种重要的语音特征参数,包括线性预测倒谱系数、MEL倒谱系数、语音动态参数、激励源特征等,对这些参数进行分析和比较,以达到话者识别的目的。