论文部分内容阅读
混合像元问题是定量遥感中的热点问题之一,为了改进从遥感数据中提取定量信息,人们建立了各种混合光谱分解技术,其中线性光谱混合模型和神经网络模型就是两种比较成熟的方法。以陕西省横山地区的高光谱Hyperion数据为研究基础,通过最小噪声变换(MNF)、像元纯度指数(PPI)转换和RMS误差分析的迭代方法相结合提取影像中的纯净像元作为终端端元。分别运用神经网络模型和线性光谱混合模型对影像进行光谱分解,得到各个组分的分解图像。以标准植被指数(NDVI)影像为衡量标准,选取训练样本点,分别对两种模型进行回归分