论文部分内容阅读
语音识别性能的不理想造成的识别错误以及不符合文法的口语输入往往造成口语理解性能下降.针对这个问题,提出一种改进口语理解稳健性的方法.该方法通过在训练数据集中人工加入错误文本噪声进行语料扩充,再进行条件随机场口语理解模型训练,用得到的模型对具有噪声的未知数据集进行口语理解.实验结果表明该方法能提高口语理解的稳健性,较未加入噪声训练得到的模型在准确率、召回率及F1值上都有显著的提高.