论文部分内容阅读
传统神经网络模型在捕捉上下文信息时,缺乏对于某一主题重要线索的准确分析能力。对此提出嵌入常识知识库的混合注意力长短时记忆网络(LSTM)主题情感分析模型。通过引入全局注意力和位置注意力机制来改进长短时记忆网络LSTM;将常识知识库嵌入到LSTM的情感分类训练中。该模型在推断特定主题的情感极性时明确地抓住了每个上下文词的重要性,使分类更加准确。实验结果表明,混合注意力模型与常识知识库的引入,提高了主题情感分析的分类效果。