论文部分内容阅读
提出了一种新的基于范例集的跟踪器:CEE(CAMSHIFT Embedded Exemplar)跟踪器,实现复杂场景下的动态手势跟踪。在学习阶段,利用ICAMSHIFT(Improved CAMSHIFT)算法提取手部轮廓特征并生成范例集,同时建立手势的动态HMM模型;在跟踪阶段,利用由ICAMSHIFT算法获取的手部特征和HMM概率模型预测手势动作,然后根据学习所得范例集获取当前手部轮廓。实验结果表明,算法能实现复杂场景下的准确手势跟踪,并能在手部位置与方向任意变化情况下实现手部轮廓的提取与跟踪。