基于贝叶斯网络的概念间语义相似度计算

来源 :计算机与现代化 | 被引量 : 0次 | 上传用户:LittleCam
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
概念间语义相似度研究是知识表示和信息检索领域中的一个重要内容,也是自然语言处理研究的重要组成部分,是人工智能领域中一个亟待解决的问题。本文在本体的基础上,对传统的相似度计算模型进行改进,提出一种基于贝叶斯网络的概率推理方法,改进概念间语义距离的计算,从而提高了语义相似度计算模型的效果;同时采用D-分离的方法,解决了在推理过中的计算复杂性。
其他文献
提出一种基于K-均值聚类的无线传感器网络分簇算法。从K-均值聚类算法中要解决的合理聚类数的确定、初始聚类中心的选择以及聚类性能对目标函数的依赖这三个问题入手,运用K-
独立成分分析近年来广泛应用于人脸识别等模式领域。首先对人脸图像进行预处理降维,然后利用ICA算法获得人脸影像独立基成分,利用人脸影像独立基来构造一个子空间,最后利用待识别图像在这个空间上的投影进行人脸识别。针对训练样本个数,训练人数以及独立基数目影响识别率等三个问题进行实验,得出结果并进行分析。
基于ECC(Elliptic Curves Cryptography),提出一种新的适用于ad hoc网的基于口令认证的多方密钥协商协议.该协议包括系统初始化、基于ID的口令进化算法、节点身份认证算法和节
在数据库操作中查询操作所占比重最大,而查询操作又是代价最大的语句。在数据查询操作过程中,每种类型的操作发生的代价各不相同。本文结合实例,提出对查询过程中的诸如投影