论文部分内容阅读
:把温度T和应变速率ε·对Ti-47Al-2Mn-2Nb(TiAlMnNb)和Ti-47Al-2Mn-2Nb-0.8TiB2(TiAlMnNbB)合金在1073~1373K和10-5~10-1s-1条件范围内拉伸应力的影响归结为Zener-Hollomon因子Z=ε·exp(Q/RT)的影响,利用Sellars和Tegart提出的双曲函数,确定两种合金拉伸形变应力峰值σP与Z因子之间的关系函数;得到的σP解析表达式中A、α和n值分别为2.308×108s-1、8.50×10-9Pa-1和2.594(TiAlMnNb),1.423×1010s-1、6.275×10-9Pa-1和2.980(TiAlMnNbB);Z因子中的激活能Q值分别为322.3kJ/mol和351.6kJ/mol,提示两种合金高温拉伸形变受微观原子扩散过程控制
: The temperature T and the strain rate ε · for the Ti-47Al-2Mn-2Nb (TiAlMnNb) and Ti-47Al-2Mn-2Nb-0.8TiB2 (TiAlMnNbB) alloys at 1073-1373K and 10-5-10-1s-1 The influence of tensile stress in the range is attributed to the influence of Zener-Hollomon factor Z = ε · exp (Q / RT). Using the hyperbolic function proposed by Sellars and Tegart, the tensile stress peaks σP and Z of the two alloys The values of A, α and n in the analytic expression of σP are 2.308 × 108s-1,8.50 × 10-9Pa-1 and 2.594 (TiAlMnNb), 1.423 × 1010s-1,6.275 × 10-9Pa -1 and 2.980 (TiAlMnNbB) respectively. The activation energy Q values of Z factor were 322.3 kJ / mol and 351.6 kJ / mol, respectively, suggesting that the tensile deformation of the two alloys was controlled by the microscopic atomic diffusion process