论文部分内容阅读
针对道路交通环境中路面标志识别涉及的数据集较少和识别准确率不足的问题,研究了基于深度卷积生成对抗网络的道路表面指示标志的识别方法。在深度卷积生成对抗网络的结构基础上,根据具体应用修改生成网络和判别网络的损失函数,并用随机梯度下降算法替代原始的优化器,对指示标志的原始样本集进行样本生成,以增加样本数据量。基于Faster R-CNN算法进行路面标志的特征提取,实现路面指示标志的识别,并基于迁移学习对识别模型进行微调,将目标识别效果应用于实际道路环境中。实验结果表明,通过深度卷积生成对抗网络生成的样本图