论文部分内容阅读
矿物识别在许多研究领域都有着重要作用,基于深度学习技术的智能矿物识别为这些领域带来了新的发展方向,不仅能有效节省人工成本,还能减小识别错误。针对石英、角闪石、黑云母、石榴石和橄榄石共5种矿物进行实验,提出了一种准确高效的智能矿物识别方法。实验采用图像分析常用的卷积神经网络建立模型,设计出一套基于残差神经网络的矿物识别方法。本实验独立采集了5种矿物的偏光显微图像数据集,用于模型的训练、验证和测试,并通过合理的数据增强策略来扩充训练数据集。在卷积神经网络的结构设计上,选取了ResNet-18作为框架,最