论文部分内容阅读
针对科学实践、经济生活等诸多领域数据分布相对复杂的分类问题,使用传统支持向量机(SVM)无法很好地刻画其变量间的相关性,从而影响分类性能。对于这一情况,提出使用经典高斯函数的参数推广形式——Q-高斯函数作为SVM的核函数构建财务危机预警模型。结合沪深股市A股制造业上市公司的财务数据分别建立r-2和r-3财务顸警模型进行实证分析,采用显著性检验筛选出合适的财务指标并利用交叉验证方法确定模型参数。相比高斯核SVM财务危机预警模型,使用Q-高斯核SVM建立的r-2和r-3模型的预报准确率都提高了大约3%,而且成