论文部分内容阅读
针对多分量线性调频信号(LFM)信号在低信噪比状况下信号检测出现漏检、参数估计精度不高等问题,提出在广义S变换(GST)基础上,进行奇异值分解(SVD)滤波的方法。在S变换基础上,导出了广义S变换及逆变换公式,对离散后得到的广义S变换矩阵进行奇异值求解,通过选取合适的奇异值个数,实现多分量信号时频滤波。仿真结果表明,该方法在低信噪比状况下能有效滤除噪声,避免因噪声或者各分量信号强弱相差较大而出现漏检现象,同时信号参数估计精度也得到了提高。