论文部分内容阅读
针对田间复杂环境下杂草分割精度低的问题,提出了基于Mask R-CNN的杂草检测方法。该方法采用残差神经网络Res Net-101提取涵盖杂草语义、空间信息的特征图;采用区域建议网络对特征图进行杂草与背景的初步二分类、预选框回归训练,利用非极大值抑制算法筛选出感兴趣区域;采用区域特征聚集方法(Ro IAlign),取消量化操作带来的边框位置偏差,并将感兴趣区域(Ro I)特征图转换为固定尺寸的特征图;输出模块针对每个Ro I计算分类、回归、分割损失,通过训练预测候选区域的类别、位置、轮廓,实现杂草检