论文部分内容阅读
真空断路器作为电力系统的开关以及保护设备,其能可靠地工作对于电力系统的安全运行具有十分重大的意义。首先对采集到的断路器状态信号进行小波包变换,利用能量熵获取特征向量;其次对于提取到的特征向量用深度神经网络进行处理,将正常状态与故障状态进行一次分类;最后再用BP神经网络对故障状态进行判断,按照具体故障类型进行分类。仿真结果表明,提出的基于深度神经网络与BP神经网络结合的真空断路器故障诊断方法相比较于其它方法具有更高的准确性和快速性。