论文部分内容阅读
改进现有的太阳辐照度ANN预测模型,提出基于时间周期性和邻近相似性的两维变尺度预测值修正方法。首先增加环境温度和积日作为输入,使模型能更好地拟合辐照度的变化规律,提高其预测性能和泛化能力;并且利用适当的数学变换对多维历史数据输入进行维数约减以降低模型的复杂程度,增强其鲁棒性和适应性;然后根据不同的修正尺度、天气类型和辐射衰减程度定义参考值和相应的权重系数,在此基础上利用历史数据对辐照度的预测值进行修正。实际数据的仿真结果验证了模型改进的合理性和修正方法的有效性。