论文部分内容阅读
行星齿轮箱振动信号具有复杂多分量和调幅-调频的特点。幅值解调和频率解调方法能够避免传统Fourier频谱中的复杂边带分析,有效识别故障特征频率。经验小波变换通过对信号Fourier频谱的分割构造一组正交滤波器组,能提取具有紧支撑Fourier频谱的单分量成分,再对单分量成分运用Hilbert变换即可实现信号的解调分析。经验小波变换能够有效分离出调幅-调频成分,不存在模态混叠现象,具有完备的理论基础,自适应性好、算法简单、计算速度快。将改进的经验小波变换应用于行星齿轮箱振动信号的解调分析;提出了一种单分量个