论文部分内容阅读
传统Fisher线性判别(FLD)的常用阈值对特定数据集的分类精度存在明显差异。为提高分类精度,通过最小化贝叶斯误差对二分类问题的FLD阈值进行了优化设计。对UCI中的8个数据集进行验证,将所得的平均分类精度与常用阈值在这些数据集上所得的平均分类精度进行比较。结果表明,所提出的优化阈值分类效果显著,相比于常用阈值,在平均分类精度上有所提升。