论文部分内容阅读
Tri-layer CdS/SiO_2/polymer hybrid nanospheres were synthesized by distillation precipitation polymerization of either ethyleneglycol dimethacrylate(EGDMA) or EGDMA together with comonomers having different functional groups, such as methacrylic acid,4-vinylpyridine and 2-hydroxyethylmethacrylate,in the presence of 3-(methacryloxy)propyl trimefhoxysilane(MPS)-modified CdS/SiO_2 nanoparticles as seeds in acetonitrile with 2,2’-azobisisobutyronitrile(AIBN) as initiator.In this approach,MPS-modified inorganic seeds were prepared by the modification of CdS/SiO_2 nanoparticles via the self-condensation reaction between the hydroxyl groups of sinaols,in which the CdS/SiO-2 nanoparticles were afforded by a reverse microemulsion technique for the synthesis of CdS core nanoparticles with the subsequent coating of silica layer. The polymer shell-layers encapsulated over the MPS-modified CdS/SiO_2 inorganic seeds via the efficient capture of the monomers and oligomers from the solution with the aid of the vinyl groups incorporated by the MPS modification,in which the polymer shell-thickness and functional groups including carboxyl,pyridyl and hydroxyl,were facilely controlled by the feed of EGDMA as well as the types of comonomers used for the polymerization.These nanospheres were characterized by transmission electron microscopy(TEM),Fourier-transform infrared spectroscopy(FT-IR),thermogravimetric analysis (TGA),fluorescence spectroscopy and zeta potential.
Tri-layer CdS / SiO 2 / polymer hybrid nanospheres were synthesized by precipitation precipitation polymerization of either ethylene glycol dimethacrylate (EGDMA) or EGDMA together with comonomers having different functional groups, such as methacrylic acid, 4-vinylpyridine and 2-hydroxyethylmethacrylate, in the presence of (MPS) -modified CdS / SiO 2 nanoparticles as seeds in acetonitrile with 2,2’-azobisisobutyronitrile (AIBN) as initiator. In this approach, MPS-modified inorganic seeds were prepared by the modification of CdS / SiO 2 nanoparticles via the self-condensation reaction between the hydroxyl groups of sinaols, in which the CdS / SiO-2 nanoparticles were forged by a reverse microemulsion technique for the synthesis of CdS core nanoparticles with the subsequent coating of silica layer. The polymer shell- layers encapsulated over the MPS-modified CdS / SiO 2 inorganic seeds via the efficient capture of the monomers and oligomers from the solution with the a id of the vinyl groups incorporated by the MPS modification, in which the polymer shell-thickness and functional groups including carboxyl, pyridyl and hydroxyl, were facilely controlled by the feed of EGDMA as well as the types of comonomers used for the polymerization. These nanospheres were characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), fluorescence spectroscopy and zeta potential.