论文部分内容阅读
结合生物信息学方法及分子模拟手段,选择较高准确度的方法,预测了SARSE蛋白的分子结构并探讨其潜在的生物学活性和功能.研究结果表明,SARSE蛋白跨膜区25个疏水的氨基酸形成α-螺旋结构,包埋于病毒外壳磷脂双分子层中;N端10个氨基酸残基位于膜外;C端41个残基则附着于磷脂双分子膜内侧.同时发现,C端由9个氨基酸组成的劈裂是一个可能的活性部位.对分子进行进一步静电势分析证实,E蛋白C端可能的活性部位具有较大的静电势,可能的活性残基具有最大电荷密度,故有较强的结合受体或与其它蛋白相互作用的能力.
Combined with bioinformatics methods and molecular modeling methods, we chose the higher accuracy method to predict the molecular structure of SARSE protein and explore its potential biological activity and function.The results show that the SARS protein transmembrane 25 hydrophobic amino acids Forming an a-helix structure, embedded in the virus shell phospholipid bilayer; N-terminal 10 amino acid residues in the membrane; C-terminal 41 residues are attached to the inside of the phospholipid bilayer membrane also found that the C- Cleavage of the amino acid composition is a possible active site.Further electrostatic potential analysis of the molecule confirmed that the active site at the C-terminal of E protein has a larger electrostatic potential and the possible active residues have the highest charge density, Strong ability to bind receptors or interact with other proteins.