论文部分内容阅读
针对现有的各种数值方法在求解一维对流扩散方程时容易出现的数值振荡、假扩散等计算稳定性和计算精度不足问题,提出应用独立覆盖流形法进行数值求解的新思路,即分区的多项式级数逼近。基于标准的伽辽金法推导一维对流扩散方程的独立覆盖流形法求解公式。采用场变量的一阶导数在独立覆盖之间的窄条形覆盖重叠区域是否连续的后验误差估计方法,通过覆盖加密和级数升阶的h-p型混合自适应进行自动求解。给出的稳态和非稳态分析算例结果表明:分区级数的数值解稳定地逼近于精确解,最终两者很好地吻合;对于对流占优问题,自适应求解可以有效避免数值