论文部分内容阅读
Objective:To construct the recombinant adenovirus vectors of calretinin (CALB2) gene and small interfering RNA (siRNA),for over-expression or knock-down of CALB2,as the basis of functional investigation of CALB2 in testicular Leydig cells.Methods:The cDNA sequence of CALB2 was cloned by the reverse transcriptive polymerase chain reaction (RT-PCR).A CALB2 gene fragment was sub-cloned into adenovirus shuttle plasmid pAdTrack-CMV to construct the shuttle plasmid pAdTrack-CALB2.Then it was transformed into BJ5183 cells with the adenoviral backbone pAdEasy-1 to obtain the homologous recombinant AdCMV-CALB2.The recombinant AdCMV-CALB2 was further packaged and amplificated in AD293 cells.The expression of CALB2 protein in AD293 cells was detected by Western blotting.CALB2 protein was over-expressed in mouse Leydig cell line (MLTC-1 cells) by the constructed AdCMVCALB2.CALB2 gene siRNA recombinant adenovirus vector (Ad-H1-siRNA/CALB2 was also constructed simultaneously.Its efficacy was detected in AD293 cells by Western blotting.Results:The CALB2 gene recombinant adenovirus vector AdCMV-CALB2 and the CALB2 gene siRNA recombinant adenovirus vector Ad-H1-siRNA/CALB2 were constructed successfully by endonulease digestion and sequencing.AD293 cells infected with AdCMV-CALB2 or Ad-H1-SiRNA/CALB2 significantly expressed GFP protein.The expression of CALB2 protein was significantly up-regulated in AD293 cells infected with AdCMV-CALB2 plasmids,while the expression of CALB2 protein was down-regulated by 60% in the CALB2 cells infected with Ad-H1SiRNA/CALB2.MLTC-1 cells did not markedly express CALLB2 protein,while MLTC-1 cells infected with AdCMV-CALB2 expressed CALB2 protein at a high level.Conclusions:The recombinant adenovirus vectors of AdCMV-CALB2 and Ad-H1-SiRNA/CALB2 were successfully constructed.Both vectors effectively expressed in AD293.CALB2 protein was over-expressed in the cultured MLTC-1 cells by AdCMV-CALB2.These vectors of CALB2 gene and Leydig cell line are useful tools for investigating the testicular function.