论文部分内容阅读
提出了一种基于遗传编程和支持向量机的故障诊断模型。通过遗传编程对时域指标进行特征选择和提取,得到更能反映信号本质的特征信号,该特征信号可作为识别特征输入多类支持向量机,实现对模拟电路不同类型软故障的识别。实验结果表明,同传统时域指标相比,经过遗传选择和提取的特征对模拟电路的软故障具有更好的识别能力,进而提高了多类支持向量机的分类准确性。