论文部分内容阅读
针对粒子群优化(PSO)算法存在的开发能力不足,导致算法精度不高、收敛速度慢以及微分进化算法具有的探索能力偏弱,易陷入局部极值的问题,提出一种基于模糊高斯学习策略的粒子群-进化融合算法。在标准粒子群算法的基础上,选取精英粒子种群,运用变异、交叉、选择进化算子,构建精英粒子群-进化融合优化机制,提高粒子种群多样性与收敛性;引入符合人类思维特性的模糊高斯学习策略,提高粒子寻优能力,形成基于模糊高斯学习策略的精英粒子群和微分进化融合算法。对9个标准测试函数进行了计算测试和对比分析,结果表明函数Schwef