论文部分内容阅读
针对含有高噪声、体外点及不完整点云数据的配准失效问题,该文提出以信息论为理论基础,相对熵度量点云相似度的KL-Reg算法。该算法不需要显式地建立对应关系,首先将点云数据建模为高斯混合模型,然后用相对熵度量高斯混合模型间的分布距离,最后通过最小化分布距离计算模型变换。实验结果表明所提的KL-Reg算法配准精度高、稳定性强。