论文部分内容阅读
目的:对表面肌电信号进行分类识别。方法:30名健康的志愿者参加数据采集。每名志愿者用右手臂完成两个动作:前臂内旋和前臂外旋。在每个动作中,采集一组表面EMG信号。总共获得30组内旋和30组外旋的表面EMG信号。然后,运用小波包系数熵构成特征向量,用Baycs决策对两种模式信号进行分类识别。结果:当信号长度达350ms后.正确识别率达到100%。结论:采用小波包系数熵可以有效地提取表面EMG信号的特征信息,达到控制前臂假肢的目的。