论文部分内容阅读
文本蕴涵识别是解决自然语言中存在的同义异形问题的有效途径.虽然国内外学者已经提出了很多文本蕴涵识别模型,但影响文本蕴涵识别的因素错综复杂,识别准确率普遍不高.该文把文本蕴涵识别看作二元分类问题,抽取词汇特征、句法依存关系特征及FrameNet语义知识库特征的多种特征构造特征矩阵,训练SVM分类器,实现文本蕴涵识别.该方法在国际文本蕴涵识别技术评测RTE3的测试集上进行测试,蕴涵正例识别准确率达到了78.1%,高于RTE3评测2-ways的最高结果.