论文部分内容阅读
针对小波神经网络的隐层小波函数可以调节伸缩因子与平移因子影响网络输出的特点,将其伸缩因子与平移因子引入到最小扰动动态学习率的学习算法中。此算法通过计算动态学习率,使得小波函数的伸缩因子与平移因子以及网络连接权值的变化最小,这样便可提高小波神经网络的稳定性和收敛速度。使用这种小波神经网络对机器人建模,通过比较模型的输出(运动状态估计值)与实际测量值可得到残差,并分析残差提取故障判断准则,从而进行推进器故障诊断。仿真试验验证了该方法的有效性。